
User Stories and Agile Estimation

Lecture 8

SWE 215: Software Requirements Engineering

Course Topics
•Why Requirements Engineering?
•Introduction to Requirements
•RE in Software Development Life Cycles
•System Vision, Context, and RE Framework
•Fundamentals of Goal Orientation
•Fundamentals of Scenarios
•Requirements Discovery
•User Stories and Agile Estimation
•Features Prioritization
•Requirements Negotiation
•Requirements Validation
•Fundamentals of Requirements Management

Lecture Objectives

3

Learn how to model user stories

Learn user story estimation techniques

Lecture Outline
4

User Story

User Story Acceptance Criteria

 Spikes

Relative estimation

Estimation using story points

Estimation using planning poker

Estimation using tabletop

Team velocity

Estimation using Ideal Developer Days (IDDs)

User Story Overview
5

Basic definition of a user story:

A user story is a brief statement of intent that describes

something the system needs to do for the user.

 In XP, user stories are often written by the customer, thus

integrating the customer directly in the development process

 In Scrum, the product owner often writes the user stories,

with input from the customer, the stakeholders, and the team.

 In practice, any team member with sufficient domain

knowledge can write user stories, but it is up to the product

owner to accept and prioritize these potential stories into the

product backlog.

User Story Overview
6

 A user story captures a short statement of function on an

index card or perhaps with an online tool.

 In simple backlog form, stories can just be a list of things the

system needs to do for the user:

Log in to my web energy-monitoring portal
See my daily energy usage
Check my current electricity billing rate

 The user story provides the common language to build

understanding between the user and the technical team (help

bridge the developer – customer communication gap)

User Stories are not Requirements

7

They are different from use cases and SRS in many ways:

 They are not detailed requirements specifications but are

rather negotiable expressions of interest.

 They are short, easy to read, and understandable to

developers, stakeholders, and users.

 They represent small increments of valued functionality that

can be developed in a period of days to weeks and can be safely

discarded after implementation (no need for maintenance).

 They are relatively easy to estimate, so effort to implement the

functionality can be rapidly determined.

User Story Form

8

Three elements of a user story:

Card represents two to three sentences used

to describe the intent of the story (details

remain to be determined).

Conversation represents a discussion

between the team, customer, product owner,

and other stakeholders, which is necessary to

determine the more detailed behavior

required to implement the intent.

Confirmation represents the acceptance

test, which is how the customer or product

owner will confirm that the story has been

implemented to their satisfaction.

User Story Voice

9

It has the following form:
As a <role>, I can <activity> so that <business value>

 <Role> represents who is performing the action or perhaps

who is receiving the value from the activity.

 <activity> represents the action to be performed by the

system

 <business value> represents the value achieved by the

activity

Example:

As a consumer (<role>), I want to be able to see my daily

energy usage (<what I do with the system>) so that I can lower

my energy costs and usage (<business value I receive)”

User Story Detail

10

 The details for user stories are conveyed primarily through

conversation between the product owner and the team.

 In case more details are needed about the story, they can be

provided in the form of an attachment (mock-up,

spreadsheet, algorithm, etc.).

 Additional notes, assumptions, and acceptance criteria can be

kept with the user story.

User Story Acceptance Criteria

11

 User Story:
As a consumer, I want to be able to see my daily energy usage
so that I can lower my energy costs and usage”

Examples of acceptance criteria:
Read DecaWatt meter data every 10 seconds and display on
portal in 15-minute increments and display on in-home
display every read.
Read KiloWatt meters for new data as available and display on
the portal every hour and on the in-home display after every
read.

 Acceptance criteria are not functional or unit tests; rather, they

are the conditions of satisfaction being placed on the system.

User Stories

12

Epics

 A Scrum epic is a large user story.

Theme:

 A “theme” is a collection of user stories.

 Sometimes it's helpful to think about a group of stories so we

have a term for that.

Story Modeling with Index Cards

13

 Provides a powerful visual mean

 The physical size of index cards forces a text length limit,

requiring the writer to articulate their ideas in just a sentence or

two. This helps keep user stories small and focused.

 Arrange them by feature (or theme), by time or iteration to

help evaluate dependencies, understand logical

sequencing.

Spikes

14

 Spikes are a special type of story used to drive out risk and

uncertainty.

 Spikes may be used for basic research to familiarize the team

with a new technology or domain.

 The story may contain significant technical risk, and the team

may have to do some research to gain confidence in a

technological approach.

Technical and Functional Spikes

15

 Technical Spikes:

Used to research various technical approaches in

the solution domain. For example, a technical

spike may be used to determine a build-versus-buy

decision, to evaluate potential performance of a

new user story, to evaluate specific implementation

technologies.

 Functional spikes:

Used whenever there is significant uncertainty as

to how a user might interact with the system.

Functional spikes are often best evaluated through

some level of prototyping, whether it be user

interface mock-ups, page flows, etc.

Spikes

16

Some user stories may require both types of spikes.

Example:
As a consumer, I want to see my daily energy use in a
histogram so that I can quickly understand my past,
current, and projected energy consumption.

In this case, a team might create two spikes:
1. Technical spike: Research how long it takes to update

a customer display to current usage, determining
communication requirements, bandwidth, and
whether to push or pull the data.

2. Functional spike: Prototype a histogram in the web
portal and get some user feedback on presentation
size, style, and charting attributes.

Guidelines for Spikes

17

 Spikes should be the exception not the rule

 A spike story should be reserved for the more critical and

larger unknowns.

 Like other stories, spikes are put in the backlog

 Spike results are different from a story, because they generally

produce information, rather than working code.

 A spike may result in a decision, prototype, proof of concept,

or some other partial solution to help drive the final results.

 The output of a spike is demonstrable, both to the team and

to any other stakeholders.

Project Estimation

18

 Estimating provides substantial value added for several

reasons:

Determining cost
Establishing prioritization
Scheduling and commitment

 In traditional project estimating:

Use a work breakdown structure to identify every task,

estimate each task, add the tasks up, build a Gantt chart, and

predict the cost and schedule.

Estimating Scope with Story Points

19

 A story point is an integer number that represents an

aggregation of a number of aspects, each of which contributes

to the potential “bigness” of a story:

• Knowledge: Do we understand what the story does?

• Complexity: How hard is it to implement?

• Volume: How much of it is there? How long is it likely to take?

• Uncertainty: What isn’t known, and how might that affect our

estimate?

 Story points are unit-less but numerically relevant (that is, a

two-point story should expect to take twice as long as a

one-point story).

Exercise Part 1: Relative Estimating

20

Think about the relative “bigness of things.”

German Shepherd

Labrador Retriever

Great Dane

Terrier
Poodle

St. Bernard

Dachshund

Bulldog

Relative Estimating

21

In this simple exercise, teams immediately struggle with ambiguity:

 What does the instructor mean by bigness? Height, weight,

mass, muscle, bite, attitude?

 What kind of poodle is it? Standard poodle? Toy poodle?

 What scale should we use?

When in doubt, ask the product owner for clarification.

Estimating Real Work with Planning Poker

22

• Need for some amount

of preliminary design

discussion is

appropriate.

• Estimate the items

within a short timebox

(maybe 30 minutes).

Estimating Real Work with Planning Poker

23

Subtle aspects built into this estimating technique:

 The estimate comes from the team as a whole including developers and

testers (e.g., fairly easy to code but really hard to test, and the reverse can

also be true).

 The range of numbers (Cohn’s modified Fibonacci series, that is, 0, 1, 2,

3, 5, 8, 13, 20, 40, 100) is cleverly designed. The lower range (0, 1, 2, 3, 5,

8) is designed to help teams more precisely estimate small things they

understand well. However, the gaps in the sequence become larger as the

size of the estimate increases, reflecting greater uncertainty.

 The expanded range (20, 40, 100): If the estimates reach this range, the

story is too big for an iteration anyway and probably represents a feature

or epic.

Estimating Real Work with Planning Poker

24

 Zero gives the teams a way to ignore small stories that can be

implemented in just a few hours.

 A consensus must be achieved before a final estimate is reached.

By discussing only the high and low estimates, teams discover

assumptions behind the estimates.

 Since the cards are turned over all at once, this prevents

individual estimators from being biased by the opinions of others

prior to “showing their card.”

 It happens pretty fast. Guidance is to allow at most two to five

minutes of discussion per item, so a team should be able to

estimate ten to twenty stories in an hour or so, which is about the

maximum amount of time a team should spend estimating.

Exercise Part 2: Estimating Real Work with Planning Poker

25

Example: Estimating Real Work with Planning Poker

26

How Much Time Should We Spend Estimating?

27

• More investment in estimating time rarely

has a material effect on the actual

estimates.

• The results indicate that all three estimates

were within a few percentage points of

each other.

Team 3

Estimating Caution: A Story within a Story

28

 The estimates for “estimate the cubic volume of the room”:

 The first two team’s estimates for measuring the cubic volume of the

room were quite similar:

 Team 1: 5 (within 30%) and 8 (within 5%)

 Team 2: 4 (within 30%) and 9 (within 5%)

 However, Team 3 was 40 (within 5%).

Why the big difference?

Estimating Caution: A Story within a Story

29

 Simply, the three teams were in two different rooms. Teams 1 and

2 were in a modest-sized, cubic conference room with low

ceilings. Team 3 was in a much larger space with high vaulted

ceilings and a very complex geometry.

The moral is as follows:

 Before you compare team estimates for theoretically comparable

user stories, you must first understand what kind of room

(software platform, programming languages, new team versus

experienced team, computing resources, legacy versus green-field

development, and so on) each team is in.

Tabletop Relative Estimation

30

• Requires face-to-face

communication.

• The team discusses each story in

the backlog and places the story

on the table in a size position

relative to other stories—small

stories to the left, bigger stories

to the right.

• Stories of about the same size

are stacked in columns.

• It is expected that stories are

shuffled after being discussed.

Tabletop Relative Estimation

31

 Each story can be seen with respect to all the other stories.

 The stories aren’t really estimated yet; they are just placed in

relative sizes.

 To create the actual estimates, points can be assigned to

columns.

 Visualization of the entire iteration enhances the team’s

understanding of the work ahead.

From Scope Estimates to Team Velocity: Establishing Velocity

32

 A team’s velocity is simply how many points the team can complete

in a standard iteration.

 The shaded areas represent stories that the team was unable to

complete in the timebox. Team 1 completed 28 story points in their

iteration, and team 2 completed 32. In other words, team 1’s velocity

is 28 points/iteration, and team 2’s velocity is 32 points per iteration.

Caveats on the Relative Estimating Model

33

 Simple and reliable process that works quite well, subject to some

caveats:

 It is based on historical data and is predictive only to the extent that

the future (new stories) looks like the past (stories already completed).

 It is valid only to the extent that the team continues to have the

same individuals. If you change the team members (for example, if

we doubled the size of team), velocity will change dramatically, but it

should stabilize after few iterations.

 A team’s velocity cannot be compared to any other team. (Imagine

if team 1 had used 2 as the smallest story and compared everything to

that. Their apparent velocity would be twice as large, but the actual

productivity would be the same.)

Increasing Velocity, Be Careful What You Ask For

34

 The goal is to continuously increase velocity while improving

quality at the same time.

 The ability to achieve a certain amount of functionality in a time

period, is not a complete measure of productivity.

 Velocity is only a tool by which teams manage and measure

themselves. If management attempts to use velocity as a measure

of team performance, the team will respond in one of three ways:

1. Continuously improve the team’s true productivity and

agility in all aspects

2. Cut back on quality

3. Simply increase the size of the estimates.

From Velocity to Schedule and Cost: Estimating

Schedule

35

If we know size and velocity, we can calculate how long it will

take to complete a story.

Estimating cost: simply take the average burdened cost for a team

and divide it by their velocity. That provides the cost per story

point for that team. Then when the team estimates an arbitrary

backlog, just multiply the cost per story point for that team by the

total estimate for the backlog.

Problems with Estimating using story points

36

1. It isn’t so easy to understand by the team, and it’s even less easy to

understand by their outside stakeholders.

2. It’s hard to get started. Until teams have done a few iterations, they have no

idea how to predict what they can accomplish.

3. Getting to schedule and cost estimates is very indirect. You have to work

through relative estimates, establish velocity, and so on, and you have to

understand the burden cost of each individual team, before you can

translate a story point into a cost.

4. Teams occasionally struggle to adjust their velocity based on the availability

of team members. For example, if a team member is only part-time for a

sprint or a key resource is not available for a period, what is the anticipated

velocity then?

5. Team velocities are not normalized. It’s not unusual for one small team to

have a velocity of 40 points per iteration, while a team twice that size has a

velocity of half that. That makes for some pretty uncomfortable discussions.

Estimating with Ideal Developer Days (IDDs)

37

A unit for estimating the size of product backlog items based on

how long an item would take to complete if:

 It were the only work being performed,

 there were no interruptions,

 and all resources necessary to complete the work were

immediately available.

The reason the estimates are called “ideal” developer days is that

the team typically deprecates their capacity for planning, demos,

management meetings, and other team and company overhead

items.

Estimating with Ideal Developer Days (IDDs)

38

 With IDDs, the team returns to a more traditional way to

estimate their work.

 The team looks at each story, discusses it with respect to the

same complexity factors and then estimates how many IDDs it

will take to do the story.

There are many advantages to this method:

 Teams have always done it that way.

 It’s far easier to understand and explain.

 It’s easy to adjust velocity for sick leave, vacations, training, and

so on.

Estimating with Ideal Developer Days

39

However, it has a disadvantages as well:

 Teams tend to get caught up when estimating in times. It’s too
tangible and too meaningful. They feel they have to get it right.

 It’s far more personal and can be politically loaded. One
developer might say a story takes two days, another four. Either
could be correct—for them—but again, more interesting
discussions result. And these discussions are not likely to be
supportive of the team spirit.

 Given these disadvantages, in balance, we prefer the
relative estimating model.

A Hybrid Model

40

Teams can proceed in large part with the relative estimating model.

But we add two simple rules:

1. Estimate the smallest story, that can be done by one person in

about a day, as a 1.

2. Only 8 IDDS per team member per two-week iteration. This

leaves about 20% for planning, demoing, company functions,

training, and other overhead.

	User Stories and Agile Estimation
	Course Topics
	Lecture Objectives
	Lecture Outline
	User Story Overview
	User Story Overview
	User Stories are not Requirements
	User Story Form
	User Story Voice
	User Story Detail
	User Story Acceptance Criteria
	User Stories
	Story Modeling with Index Cards
	Spikes
	Technical and Functional Spikes
	Spikes
	Guidelines for Spikes
	Project Estimation
	Estimating Scope with Story Points
	Exercise Part 1: Relative Estimating
	Relative Estimating
	Estimating Real Work with Planning Poker
	Estimating Real Work with Planning Poker
	Estimating Real Work with Planning Poker
	Exercise Part 2: Estimating Real Work with Planning Poker
	Example: Estimating Real Work with Planning Poker
	How Much Time Should We Spend Estimating?
	Estimating Caution: A Story within a Story
	Estimating Caution: A Story within a Story
	Tabletop Relative Estimation
	Tabletop Relative Estimation
	From Scope Estimates to Team Velocity: Establishing Velocity
	Caveats on the Relative Estimating Model
	Increasing Velocity, Be Careful What You Ask For
	From Velocity to Schedule and Cost: Estimating Schedule
	Problems with Estimating using story points
	Estimating with Ideal Developer Days (IDDs)
	Estimating with Ideal Developer Days (IDDs)
	Estimating with Ideal Developer Days
	A Hybrid Model

