
RE in Software Development Life Cycles

Lecture 3

SWE 215: Software Requirements Engineering

Course Topics
• Why Requirements Engineering

• Introduction to Requirements

• RE in Software Development Life Cycles

• System Vision, Context, and RE Framework

• Fundamentals of Goal Orientation

• Fundamentals of Scenarios

• Requirements Discovery

• User Stories and Agile Estimation

• Features Prioritization

• Requirements Negotiation

• Requirements Validation

• Fundamentals of Requirements Management

Lecture Objectives

3

 RE in traditional software development life cycles (SDLC)

 Understand the difference between requirements in traditional

SDLC and in agile processes

Outline

4

 Predictive, Waterfall-like Process

 Problems with the Waterfall model

 Requirements in iterative processes

 Spiral model

 Rapid Application Development (RAD)

 Rational Unified Process (RUP)

 Agile methods

 Requirements management in Agile processes

 Agile optimizes ROI through Incremental Value

Delivery

Predictive, Waterfall-Like Process

5

○ Software development occurred in an orderly series of sequential

stages (Progress flows top to bottom, like a waterfall)

○ Requirements were agreed to, a design was created, and code

followed thereafter. Lastly, the software was tested to verify its

conformance to its requirements and design

Requirements in the waterfall model: the Iron Triangle (1)

6

 The “requirements box” implied that:

 There is a set of requirements that can be

reasonably determined “up front”

 These requirements can be used as a basis to

estimate the schedule and budget of the

project.

More realistically:

Fixed resources

and cost

Requirements in the waterfall model: the Iron Triangle (2)

7

 This “fixed requirements scope” assumption has indeed been

found to be a root cause of project failures.

“Scope management related to attempting waterfall practices was

the single largest contributing factor for failure.”

Study of 1,027 IT projects in the UK [Thomas 2001]

 Here’s the study’s conclusion:

“...the approach of full requirements definition, followed by a long

gap before those requirements are delivered, is no longer appropriate.

The high ranking of changing business requirements suggests that any

assumption that there will be little significant change to requirements

once they have been documented is fundamentally flawed.”

Why the waterfall model is still amongst Us ?

8

 There are a number of understandable reasons:
 The model was itself born as a fix to the “code it, fix-it, code-it- some-

more-until-it’s-quickly-not-maintainable” problem.

 It appears to be logical: Understand requirements. Design a system that

conforms. Code it. Test it.

 It worked to a point (we did and still do ship a lot of software using the

water model).

 It reflects a continuing market reality —customers still do impose fixed-

date/Fixed requirements agreements on suppliers.

Iterative and Incremental Processes

9

 Failures of the waterfall model

 Increasing time-to-market pressures

 Advances in software development tools and technologies,

Drove the need for more innovative, discovery-based models

The iterative processes of the 1980s and 1990s

The Spiral Model

10

 An initial pass around the spiral is

intended primarily to understand

requirements and perform some

validation of the requirements

before more serious development

begins.

 Thereafter, the model assumed

another, larger “spiral” intended to

develop the solution in largely

sequential steps of design,

coding, integration, and testing.

 Follows a traditional sequential,

waterfall like process, but

incorporates constant feedback.

Requirements still have a strong

early placeholder.

The Rapid Application Development (RAD)

11

 Iterative development and construction of an

increasingly capable series of prototypes.

 Stands for any number of lighter-weight

approaches, using fourth generation languages

and frameworks (such as web application

frameworks), which accelerate the availability of

working software.

 From a requirements perspective, the

assumption was that if you could build it fast

enough before the requirements changed,

you would be more successful.

 If you did get it wrong, the tools are

sufficiently facile and lightweight that you

could build it again faster. JAD (Joint Application Development)

involves the client or end user in the

design and development of an application

The Rational Unified Process (RUP)

12

 Widely adopted iterative and incremental software process

model (more than a million practitioners)

 Intended for large-scale applications where robustness, scalability,

and extensibility are mandatory

The Rational Unified Process (RUP)

13

 RUP recognized the necessary overlap of the various activities
that occurred during the life cycle phases of inception, elaboration,

construction, and transition.

 For example, activities such as “requirements” were no longer

relegated to a single phase.

 Requirements activities were particularly intensive during the early

inception and elaboration phases (as illustrated by the size of the

“humps” in the diagram).

 Requirements elaboration and requirements change are considered

to be a continuous process that occurs throughout the life cycle.

Requirements in Iterative Processes

14

 No traditional big, upfront design (BUFD) requirements and design

artifacts, such as software requirements specifications, design

specifications, and the like.

 In its place, we see a “discovery based” approach.

 Apply lighter-weight documents and models such as vision

documents, use case models, and so on, which are used to

initially define what is to be built.

 The iterative process is applied to more quickly discover the

“real user requirements” in early iterations, thus substantially

reducing the overall risk profile of the project.

Adaptive (Agile) Processes

15

Adaptive models assume that:

With the right development tools and practices—it was simply more

cost effective to write the code quickly, have it evaluated by

customers in actual use, be “wrong” (if necessary), and quickly

refactor it than it was to try to anticipate and document all the

requirements up front.

Examples of adaptive methods:

Dynamic Systems Development Method (DSDM), Feature-Driven

Development (FDD), Adaptive Software Development, Scrum, Extreme

Programming (XP), Open Unified Process (Open UP), Agile RUP,

Kanban, Lean, Crystal Methods, etc.

Agile Core Principles

16

 Highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

 Welcome changing requirements, even late in development.

 Deliver working software (primary measure of progress)

frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

 Business people and developers must work together daily

throughout the project.

 Build projects around motivated individuals: Give them the

environment and support they need, and trust them to get the job

done.

Agile Methods

17

Survey of most widely adopted agile methods. Fourth Annual State

of Agile Development Survey 2009

 The most widely adopted

agile methods are Scrum

and XP.

 Scrum (with or without

combination with XP) is

now applied in 74% of

agile implementations

Extreme Programming (XP)

18

Key practices of XP include the following:

1. A team of five to ten programmers work at one location with customer

representation onsite.

2. Development occurs in frequent builds or iterations, which may or may not be

releasable, and delivers incremental functionality.

3. Requirements are specified as user stories, each a chunk of new functionality

the user requires.

4. Programmers work in pairs, follow strict coding standards, and do their own

unit testing. Customers participate in acceptance testing.

5. Requirements, architecture, and design emerge over the course of the

project.

Scrum

19

Scrum is an agile project management method.

 Work is done in “sprints,” which are timeboxed iterations of a fixed 30 days

or fewer duration.

 Work within a sprint is fixed. Once the scope of a sprint is committed, no

additional functionality can be added, except by the development team.

Scrum

20

 All work to be done is characterized as product backlog, which

includes new requirements to be delivered, the defect workload, and

infrastructure and design activities.

 A Scrum Master mentors the empowered, self-organizing, and self-

accountable teams that are responsible for delivery of successful outcomes

at each sprint.

 A product owner plays the role of the customer proxy .

 A daily stand-up meeting is a primary communication method.

 Typical Scrum guidance calls for fixed 30 day sprints, with approximately

3 sprints per release, thus supporting incremental market releases on a 90

day time frame.

Requirements Management in Agile is Fundamentally

Different

21

 In the agile battle of date versus scope, the date wins. In other

words, with agile methods, we’ll fix two things, schedule and

resources, and we’ll float the scope (requirements).

Agile Optimizes ROI Through Incremental Value Delivery

22

 In waterfall, investment (cost) starts immediately and continues until delivery is

reached.

 In agile, value delivery starts with the first shippable increment.

The sooner we deliver a feature, the sooner our customers will pay us for it

ROI $$ (agile) > ROI $ (waterfall)

Waterfall Return on Investment Agile Return on Investment

Agile Optimizes ROI Through Incremental Value Delivery

23

 Previous figure doesn’t take into account the differential value of early

market features.

 Example: Early iPhone was $600 (few months of launch). Twenty four

months later, you could buy a much more powerful version for about

$199, which is one third the price.

 Any one entering the market later with a “me too” product had to

compete at a much lower price.

 Moreover, they had to invest heavily to disrupt an incumbent market

of early adopters who are unlikely to switch as the iPhone makes its way

into its users’ daily lives.

 The value of any marketable feature decreases over time.

Agile Optimizes ROI Through Incremental Value Delivery

24

 To capture the maximum gross profit, you have to be in the

market first, or at least early enough to where the

value/pricing differential is still in effect.

 ROI actually increases at a rate even faster than the linear

rate implied by the previous figure.

CHAOS REPORT: Agile vs. Waterfall

25

	RE in Software Development Life Cycles
	Course Topics
	Lecture Objectives
	Outline
	Predictive, Waterfall-Like Process
	Requirements in the waterfall model: the Iron Triangle (1)
	Requirements in the waterfall model: the Iron Triangle (2)
	Why the waterfall model is still amongst Us ?
	Iterative and Incremental Processes
	The Spiral Model
	The Rapid Application Development (RAD)
	The Rational Unified Process (RUP)
	The Rational Unified Process (RUP)
	Requirements in Iterative Processes
	Adaptive (Agile) Processes
	Agile Core Principles
	Agile Methods
	Extreme Programming (XP)
	Scrum
	Scrum
	Requirements Management in Agile is Fundamentally Different
	Agile Optimizes ROI Through Incremental Value Delivery
	Agile Optimizes ROI Through Incremental Value Delivery
	Agile Optimizes ROI Through Incremental Value Delivery
	CHAOS REPORT: Agile vs. Waterfall

