
Fundamentals of Scenarios

Lecture 6

SWE 215: Software Requirements Engineering

Course Topics
•Why Requirements Engineering?
•Introduction to Requirements
•RE in Software Development Life Cycles
•System Vision, Context, and RE Framework
•Fundamentals of Goal Orientation
•Fundamentals of Scenarios
•Requirements Discovery
•User Stories and Agile Estimation
•Features Prioritization
•Requirements Negotiation
•Requirements Validation
•Fundamentals of Requirements Management

Lecture Objectives

3

 Fundamentals of scenarios in Requirements Engineering

 Main scenario types and their use in Requirements Engineering

 UML Use Case Diagrams

 UML Activity Diagrams

What is a Scenario ?

4

 Goals alone do not sufficiently support requirements elicitation

 Stakeholders typically find it easier to communicate their

requirements in terms of examples (e.g., interaction sequences)

rather than abstract intentions

 A scenario describes a concrete example of satisfying or failing

to satisfy a goal (or set of goals).

 A scenario typically defines a sequence of interaction steps

executed to satisfy the goal and relates these interaction steps to the

system context.

Scenarios as a Means for Putting Requirements in Context

5

Scenarios are well suited for documenting context information.

Kinds of context information:

 Actors: Persons or systems interacting with the system

 Roles: Specific class of actors

 Goals: Scenarios illustrate satisfaction of goals

 Precondition: define conditions that must hold before

executing the scenario

 Post conditions: must hold within the system or context after

executing the scenario

 Resources: special preconditions referring to persons,

information, financial or other material resources needed for a

scenario

Positive and Negative Scenarios

6

 Scenario can be positive or negative (regarding the satisfaction of

a goal)

 Positive scenario documents sequence of interactions leading to

the satisfaction of a goal

 Negative scenario documents sequence of interactions failing to

satisfy a goal

 Negative scenario may be allowed or forbidden

 Positive and negative scenarios complement each other

Example: a scenario in which an actor provides an incorrect input to

the system. Due to this incorrect input, the system cannot satisfy some

goal, but still has to react accordingly to the incorrect input.

Example: "Enable customers to withdraw cash from their account."

Chris inserts his bank card into the slot of the ATM (automated teller

machine). Chris enters his personal identification number and the amount to

withdraw. The ATM informs Chris that withdrawing the desired amount is

not possible because the amount exceeds his balance.

In the example, the stated goal is not satisfied due to an insufficient

account balance.

Allowed Negative Scenarios

 The failure to satisfy the related goals cannot be tolerated

 For instance, because the respective goals are critical for the

system and/or its context, the execution of the sequence is

regarded as a system failure.

 The stakeholders must take appropriate measures to prevent the

execution of the sequence of interactions documented in a

forbidden negative scenario.

Forbidden Negative Scenarios (failure scenario)

 Example: "Enable customers to withdraw cash from their

account".

Jack inserts his bank card into the slot of the ATM. Jack enters his

personal identification number and the amount to withdraw. The

ATM charges the desired amount from Jack's account. When

dispensing the money, the Dispensing mechanism of the ATM

fails.

In the scenario, the customer's account is charged although

the ATM Dispenses no money. Clearly this behavior of the

ATM is not tolerable.

Forbidden Negative Scenarios

8

Descriptive and Exploratory/Explanatory Scenarios

10

 Descriptive scenario:

 Describes process or workflow

 Purpose: understanding its operations

 Exploratory/Explanatory scenario:

 Explore and evaluate possible, alternative solutions in order to

support the selection of one alternative solution.

 Provides background information and rationales for

particular interaction sequences

 For example, ‘automatic braking manoeuvre’ …… there is a high

risk of rear-end collision. A rapid change of lane might cause the

car to skid or spin……………

Instance and Type Scenarios

11

Instance scenario: Describes a concrete (existing or envisioned)

sequence of interactions between concrete actors

Carl wants to drive to Union Street in Plymouth. Carl uses the navigation

system of his VW Golf with license number ‘E-12’. Carl selects ‘enter

destination’ in the main menu, enters the destination ‘Union Street,

Plymouth’, and presses the key ‘calculate route.

Type scenario: Abstracts from the concrete actors, inputs and

outputs of a specific sequence of interactions

The driver wants to drive to a destination using the navigation system. He enters

the destination. The system calculates the route from the current position of the

car to the entered destination.

Instance and Type Scenarios

12

 Mixed scenario

 Important content described at instance level

 Content not completely understood is described at instance level to

avoid errors resulting from early abstractions

 Content that is well understood described at the type level

 Conflicting or potentially conflicting content described at instance

level

The driver activates the navigation system. The system asks the driver:

‘Please state your destination or press the ‘enter destination’ button on

the main menu. The driver presses the ‘enter destination’ button and

enters the destination manually. After entering the destination the

driver initiates the calculation of the route.

System-Internal, Interaction, and Context Scenarios

13

 System-internal (type A) scenarios

Focus exclusively on system-internal interactions (interactions that

occur within the system boundaries)

 Interaction (type B) scenarios

Document sequences of interactions between system and its actors

(persons and systems in the context)

 Context (type C) scenarios

Document additional context information relevant for the system usage

System-internal scenarios (type A scenarios)

14

Interaction scenarios (type B scenarios)

15

Context scenarios (type C scenarios)

16

Primary versus Secondary Actors

17

Primary Actors: The Actor(s) using the system to achieve a goal.

The Use Case documents the interactions between the system

and the actors to achieve the goal of the primary actor.

Secondary Actors: Actors that the system needs assistance from

to achieve the primary actor’s goal.

[Cockburn 2006]

Secondary actors may or may not have goals that they expect to be

satisfied by the use case, the primary actor always has a goal, and

the use case exists to satisfy the primary actor.

Example I

18

A bank loan officer wants to review a loan application from a

customer, and part of the process involves a real-time credit rating

check.

Use Case Name: Review Loan Application

Primary Actor: Loan Officer

Secondary Actors: Credit Rating System

We need to define the Secondary Actor because without the “Credit

Rating System” we cannot successfully complete the Use Case.

In other words, the goal of the Primary Actor is to successfully

complete the Loan Application, but they need the explicit “help” of

the Secondary Actor (Credit Rating System) to achieve this goal.

Example II

19

A Human Resources manager wants to change the job code of an

employee, and as part of the process, automatically notify several

other departments within the company of the change.

 Use Case Name: Maintain Job Code

 Primary Actor: Human Resources Manager

 Secondary Actors: None

This is where people sometimes get confused.

Example II (cont.)

20

We don’t include The “other departments” as Secondary Actors

for the following reasons:

1. The other departments are not required for the successful

completion of the Use Case

2. We are not expecting any response from the other departments

(at least within the bounds of the Use Case under discussion)

Within the detail of the Use Case Specification Main Success

Scenario, we would include something like: “The system sends a

notification to the related department heads (ref. Business Rule

BR101)”

UML Use Case Diagram

(UCD)

Use Case Diagram (UCD)

22

 Built in early stages of development

 Purpose:

 Model the context of a system

 Capture the requirements of a system

 Diagram that shows a set of use cases and actors and their
relationships.

 Actors may be connected to use cases only by association.
 An association between an actor and a use case indicates that the actor

and the use case communicate with one another, each one possibly
sending and receiving messages.

 However, they do not capture the full information of the actual use cases

 textual description is essential

UML: What is an Actor?

23

The Unified Modeling Language (UML) defines an Actor as:

“An actor specifies a role played by a user or any other system
that interacts with the subject”

 Actors are NOT part of the system

 Include system components only if they are responsible for

initiating/triggering a use case.

 For example, a timer that triggers sending of an e-mail

reminder

 Include all user roles that interact with the system

 Actors are not individual persons (e.g., John) but stimulates the

system to react (primary actor)

Actors in UML

24

In UML, an actor is represented as a stickman.

What is a use case?
25

 A case of a use of the system/product

 Tells a story: A use case is a description of a sequence of

events involving interactions of a user with the system

 A use case describes what a system does but it does not specify

how it does it.

 A use case typically represents a major piece of functionality

that is complete from beginning to end.

 Is oriented toward satisfying a user's goal

Basic elements of use case diagram

26

Actor: is someone interacting with a use case (system

function). Named by a noun.

Use Case: specifies system function (process – automated or

manual). Named by a verb (Do something)

Each Actor must be linked to a use case, while some use

cases may not be linked to actors.

How do we describe use cases?

27

 Textual or tabular descriptions

 Use Case Diagrams

In the UML, a use case is represented as an oval.

Use Case Template

28

Use Case ID:

Use Case Name: Each use case is given a name.

Created By: Author Last Updated By:

Date Created: Last Revision Date:

Actors: Actors associated with this use case

Description: A brief description of the use case, typically one or two sentences.

Dependencies Description of whether the use case depends on other use cases, that is, whether it

includes or extends another use case.

Trigger: Describes how the use case is triggered.

Preconditions: One or more conditions that must be true at the start of the use case

Postconditions: Condition that is always true at the end of the use case if the main sequence has

been followed.

Normal Flow: Description of the main sequence of the use case

Alternative Flows: Description of alternative branches off the main sequence.

Frequency of Use: How frequent this use case is used

Special Requirements: Any special requirements

Assumptions: Any assumptions

Notes and Issues: Any extra notes and issues

Identifying Use Cases

29

 What will the actor use the system for?

 Describe the functions that the user will want from the system

 Will the actor create, store, change, remove, or read data in the

system?

 Describe the operations that create, read, update, and delete

information

 Will the actor need to inform the system about external events

and vice versa?

 Describe how actors communicate information about events that

the system must know about

 Describe how actors are notified of changes to the internal state of

the system

Elements of a Use Case Diagram

30

Relationship between Use Cases and Actors

31

Actors may be connected to use cases by associations, indicating that

the actor and the use case communicate with one another.

Relationship between Use Cases and Actors

32

Include Relationship

33

 The base use case explicitly incorporates the behavior of another use case

at a location specified in the base.

 The included use case never stands alone. It only occurs as a part of

some larger base that includes it.

 Reuse: Enables us to avoid describing the same flow of events several

times by putting the common behavior in a use case of its own.

Include Relationship

34

 A standard case linked to a mandatory use case.

 Example: to Authorize Car Loan (standard use case), a clerk

must run Check Client’s Credit History (include use case).

 Standard use case can NOT execute without the include case 

tight coupling.

 The standard UC includes the mandatory UC (use the verb to

figure direction arrow).

Basic and Alternative Flows

35

 Basic flow: Flow that represents the most

common path (the “happy path”) from start to

finish through the use case.

 What actor’s event starts the use case?

 How does the use case end?

 How does the use case repeat some behavior?

 A number of alternate flows based on both

regular circumstances and exceptional

events. The following questions can help

discover these paths.

 What else can the actor do?

 How will the actor react to optional situations?

 What variants might happen?

 What exceptions to the usual behavior may

occur?

Extend Relationship

36

 Extended use case is meaningful on its own, it is independent of the

extending use case.

 Extending use case typically defines optional behavior that is not

necessarily meaningful by itself.

 The extension takes place at one or more extension points defined in

the extended use case.

 Extend relationship is shown as a dashed line with an open

arrowhead directed from the extending use case to the extended

(base) use case. The arrow is labeled with the keyword «extend».

Extend Relationship

37

The new functionality may open up a whole raft of possibilities and

there is a danger that the Alternative Flow spawns further sub

flows.

The Use Case may become difficult to manage. To avoid this the

«extend» relationship can be used to pull the Alternative Flow and

its sub-flows out into a new Use Case.

The «extend» relationship says that we execute the base Use Case but

when we get to a specified point in the flow, if the right conditions are

met, we perform some different steps.

Clearly this is very similar to an Alternative Flow. The advantage is that

the Alternative Flow and any dependent sub-flows have been moved

into a separate Use Case.

Extend Relationship: Example

38

The condition of the extend relationship as well as the references to

the extension points are optionally shown in a comment note attached

to the corresponding extend relationship.

Example: Use Case description

39

There are other Use

Cases where we also

need to record the

Customer’s details

Example: Include relationship

40

uc System

Sales Assistant

Take Customer
Order

Return Faulty
Goods

Identify
Customer

«include»

«include»

Example: Alternate flows

41

Example: Specify the Include in the base use case

42

Example: Special treatment

43

Suppose we want to sell products that are made to order and require

a degree of customer specification.

For these products, we will need to record the customer’s additional

requirements, such as size and color.

In this case we are adding something extra to the flow of the

base Use Case.

We could do this as an Alternative Flow.

Example: Alternative flows

44

Example: Extend relationship

45

uc System

Sales Assistant

Take Customer
Order

Return Faulty
Goods

Identify
Customer

Sell Customer-
Specifc Product

«include»

«include» «extend»

Example: the extension

46

Reusing Use Cases through Actor Generalization

47

 There is duplicate behavior in both the buyer and seller which includes

"create an account" and "search listings".

 Extract a more general user that has the duplicate behavior and then

the actors will "inherit" this behavior from the new user.

uc System

Buyer

Seller

Generic User

Create
Account

Searches listings
for item

Purchases item

Places Bid

Creates an
Auction

Ships item

Generalization of Use Cases

48

• The child use case inherits the behavior and
meaning of the parent use case.

• The child may add to or override the behavior of its
parent.

uc System

Parent

Child

uc System

Register
student

Register non-
graduate student

register graduate
student

Generalization of Use Cases

49

Concrete vs. Abstract Use Cases

The “Buy Tickets” use case is

concrete because it can be

performed all by itself

 Abstract use cases cannot be

performed

 Abstract use cases only provide

partial behavior and thus they

need to be implemented

 Described as Italic

Implementation Relationship

The generalization relationship is used to implement an abstract
use case

 Called also “misuse case” describes a sequence of interactions

in which a hostile actor uses the system against the

stakeholders' intentions.

 The execution of a misuse scenario represents a threat for the

system, the stakeholders, or other systems in the context.

Example:

Tom, the driver of another car, intentionally cuts in right ahead of

Carl in order to cause Carl's vehicle to perform a full braking. During

this braking maneuver Carl is injured.

A hostile actor knowingly causes a dangerous situation and

thereby misuses the car safety system.

Misuse Scenarios/Cases

 Models functional security requirements

 Valuable for hazard and threat analysis

 Misuse cases are negative use cases

 Actor is a hostile agent, called also mis-actor

 Extension of use case modeling

 Used for test cases generation

Drive the Car Steal the Car

Car ThiefCar Thief

threatens

Misuse Cases

Misuse Cases

54

• A misuse case model consists of:
 Misuse case diagram
 Misuse case descriptions

• The misuse case model makes use of include, extend, generalize
and association.

Two new relations to be used in the diagram:
• Mitigates: A use case can mitigate the chance that a misuse case

will complete successfully.
• Threatens: A misuse case can threaten a use case, e.g. by

exploiting it or hinder it to achieve its goals.

Misuse Cases Identify NFRs

 Use Cases are weak on NFRs

 Misuse Cases naturally focus on NFRs, e.g. Safety, Security

 Response is often a subsystem function, possibly to handle an Exception

Interplay of Use & Misuse Cases with Functional & Non-Functional Requirements

Driver

System Function

Misuse Case

Driver

Sub-System Function

'Misuser',

Source of Threat

'User'

Functional Requirements

Functional Requirements

Non-Functional Requirements

Misuse Case Diagram

Misuse Cases Documentation

57

There are two ways to textually describe a misuse case:

1. Embedded in a use case description template - where you

add an extra description field called Threats. This is the field

where you fill in your misuse case steps (and alternative flows).

This is referred to as the lightweight mode of describing a

misuse case.

2. Use of a separate template. Inherit some of the fields from use

case description (Name, Summary, Author and Date). It also

adapts the fields Basic path and Alternative path, where they

now describe the paths of the misuse cases instead of the use

cases.

58

UML Activity Diagram

Activity Diagrams

59

 Model the flow of activity/events from a start point to the

finish point detailing the many decision paths that exist in

the progression of activities/events contained in the activity.

 May be used to detail situations where the logic is complex

and there are a lot of alternate flows (e.g., parallel

processing may occur in the execution of some activities).

 Typically used for business process modeling, for modeling

the logic captured by a single use case or usage scenario, or for

modeling the detailed logic of a business rule.

 If customers prefer diagrams over text.

Activity

60

An activity is shown as a round-cornered rectangle enclosing all

the actions, control flows and other elements that make up the

activity.

Actions

61

 An action represents a single step within an activity (one that

is not further decomposed within the activity).

 In Enterprise Architect (EA), it is referred to as “Atomic”

action.

 Actions are denoted by round-cornered rectangles.

act Dynamic View

Perform Atomic

Action

Action Constraints

62

Constraints can be attached to an action

(e.g., local pre- and post-conditions).

Control Flow

63

A control flow shows the flow of control from one action to the

next. Its notation is a line with an arrowhead.

The control flow may have a condition attached to it.

act Dynamic View

Action1 Action2
[Condition = Value]

Initial Node

64

An initial or start node is depicted by a large black spot.

You can have more than one initial node.

Objects

65

An object is shown as a rectangle.

 A Datastore is a persistent buffer node. A data

store is shown as an object with the «datastore»

keyword.

 A Central Buffer Node is a transient buffer node.

It has the same behavior as a Datastore, but the

stored content will be destroyed when the

activity ends – when an Activity Final is reached.

act Dynamic View

«datastore»

DataStore

act Dynamic View

«centralBuffer»

CentralBufferNode

act Dynamic View

Object

Object Flows

66

 An object flow is a path along which objects or data can pass.

 An object flow is shown as a connector with an arrowhead

denoting the direction the object is being passed.

 An object flow must have an object on at least one of its ends.

 A shorthand notation for the above diagram would be to use

input and output pins.

Pins

67

 Actions can have inputs and outputs, through the pins

 Hold inputs to actions until the action starts, and hold the

outputs of actions before the values move downstream

 The name of a pin is not restricted: generally recalls the type of

objects or data that flow through the pin

Output pins
Standalone pin notations:

the output pin and the

input pin have the same

name and same type

Input pins

Decision and Merge Nodes

68

 Decision nodes and merge nodes have the same notation: a

diamond shape.

 They can both be named.

 The control flows coming away from a decision node will have

guard conditions which will allow control to flow if the guard

condition is met.

Fork and Join Nodes

69

 Forks and joins have the same notation: either a horizontal or

vertical bar. (the orientation is dependent on whether the

control flow is running left to right or top to bottom).

 They indicate the start and end of concurrent threads of

control.

 A join node may have two or more incoming legs. For

continuation it's necessary that all reach the join node.

Note: In Enterprise Architect, the type join/fork is selected in Properties 

kind

Join Specification Feature

70

If only some of the arriving tokens shall be sufficient to continue with

the synchronized path, UML provides the Join Specification (JoinSpec)

feature. By this you may specify a condition, sufficient for

synchronization.

act Activ ity17

Action 1

Action 2

Action 3

{joinspec=(a and b) or (a and c)}

Action4

a

b

c

Note:

In Enterprise Architect, the type join/fork is selected in: Properties  joinSpec

Merge vs. Join Nodes

71

 A join is different from a merge in that the join synchronizes

two inflows and produces a single outflow.

 The outflow from a join cannot execute until all inflows have

been received.

 A merge passes any control flows straight through it.

 If two or more inflows are received by a merge symbol, the

action pointed to by its outflow is executed two or more times.

Flow Final Node

72

 Depicted as a circle with a cross inside

 Denotes the end of a single control flow

 A flow final destroys all tokens that arrive at it. It has no

effect on other flows in the activity.

 You can have more than one flow final node.

Activity Final Node

73

 Denotes the end of all control flows within the activity.

 Depicted as a circle with a dot inside.

 An activity may have more than one activity final node.

The first one reached stops all flows in the activity.

Flow Final vs. Activity Final

74

Partitions

75

 An activity partition is shown as either a horizontal or vertical

swimlane.

 The partitions are used to separate actions within an activity into

those performed by the accounting department and those

performed by the customer.

76

Process Order

	Fundamentals of Scenarios
	Course Topics
	Lecture Objectives
	What is a Scenario ?
	Scenarios as a Means for Putting Requirements in Context
	Positive and Negative Scenarios
	Allowed Negative Scenarios
	Forbidden Negative Scenarios (failure scenario)
	Forbidden Negative Scenarios
	Descriptive and Exploratory/Explanatory Scenarios
	Instance and Type Scenarios
	Instance and Type Scenarios
	System-Internal, Interaction, and Context Scenarios
	System-internal scenarios (type A scenarios)
	Interaction scenarios (type B scenarios)
	Context scenarios (type C scenarios)
	Primary versus Secondary Actors
	Example I
	Example II
	Example II (cont.)
	UML Use Case Diagram (UCD)
	Use Case Diagram (UCD)
	UML: What is an Actor?
	Actors in UML
	What is a use case?
	Basic elements of use case diagram
	How do we describe use cases?
	Use Case Template
	Identifying Use Cases
	Elements of a Use Case Diagram
	Relationship between Use Cases and Actors
	Relationship between Use Cases and Actors
	Include Relationship
	Include Relationship
	Basic and Alternative Flows
	Extend Relationship
	Extend Relationship
	Extend Relationship: Example
	Example: Use Case description
	Example: Include relationship
	Example: Alternate flows
	Example: Specify the Include in the base use case
	Example: Special treatment
	Example: Alternative flows
	Example: Extend relationship
	Example: the extension
	Reusing Use Cases through Actor Generalization
	Generalization of Use Cases
	Generalization of Use Cases
	Concrete vs. Abstract Use Cases
	Implementation Relationship
	Misuse Scenarios/Cases
	Misuse Cases
	Misuse Cases
	Misuse Cases Identify NFRs
	Misuse Case Diagram
	Misuse Cases Documentation
	Slide 58
	Activity Diagrams
	Activity
	Actions
	Action Constraints
	Control Flow
	Initial Node
	Objects
	Object Flows
	Pins
	Decision and Merge Nodes
	Fork and Join Nodes
	Join Specification Feature
	Merge vs. Join Nodes
	Flow Final Node
	Activity Final Node
	Flow Final vs. Activity Final
	Partitions
	Slide 76

