
Requirements Validation

Lecture 11

SWE 215: Software Requirements Engineering

Course Topics
•Why Requirements Engineering?
•Introduction to Requirements
•RE in Software Development Life Cycles
•System Vision, Context, and RE Framework
•Fundamentals of Goal Orientation
•Fundamentals of Scenarios
•Requirements Discovery
•User Stories and Agile Estimation
•Features Prioritization
•Requirements Negotiation
•Requirements Validation
•Fundamentals of Requirements Management

Lecture Objectives

3

 Requirements Risk Management

 Validation vs. Verification

 Requirements V&V Techniques:

 Requirements Reviews

 Prototyping

Requirements Risks

4

Requirements can be inadequate in many ways including:

 Inaccurate or incomplete stakeholder identification

 Insufficient requirements validation and verification

 Incomplete, inconsistent or incorrect requirements

 Incorrectly ranked requirements

Requirements risk management involves the proactive analysis,

identification, monitoring, and mitigation of any factors that

can threaten the integrity of the requirements engineering

process.

Example of issues in Requirements

5

A set of requirements for an electric water heater controller:

• If 70 ° <temperature <100 °, then the system shall output

3000 watts.

• If 100 ° <temperature <130 °, then the system shall output

2000 watts.

• If 120 ° <temperature <150 °, then the system shall output

1000 watts.

• If 150° <temperature, then the system shall output 0 watts.

Example of issues in Requirements

6

A set of requirements for an electric water heater controller:

• If 70 ° <temperature <100 °, then the system shall output 3000 watts.

• If 100 ° <temperature <130 °, then the system shall output 2000 watts.

• If 120 ° <temperature <150 °, then the system shall output 1000 watts.

• If 150° <temperature, then the system shall output 0 watts.

Some identified Issues:

• The set of requirements is incomplete because the behavior for

temperature <0° is not defined.

• The requirements are also inconsistent—for example, what happens

when temperature = 125 °?

• The requirements are also unclear because the temperatures given are

not specified as being in degree Fahrenheit or degree Celsius.

Requirements Verification and Validation (V & V)

7

Requirements validation and verification involves review,

analysis, and testing to ensure that a system complies with its

requirements.

Compliance pertains to both functional and nonfunctional

requirements.

Validation: “Are we building the right product?”

Verification: “Are we building the product right?”

 In other words, validation involves fully understanding of

customer intent and verification involves satisfying the

customer intent.

Verification and Validation (V & V)

8

Validation

Ensures that the software being developed (or

changed) will satisfy its stakeholders

Checks the software requirements

specification against stakeholders goals

and requirements

Verification

Checks consistency of the software

requirements specification artefacts and

other software development products

(design, implementation, ...) against the

specification

Requirements Validation and Verification Objectives

9

 Certifies that the requirements document is an acceptable

description of the system to be implemented

Checks a requirements document for:

 Completeness and consistency

 Conformance to standards

 Requirements conflicts

 Technical errors

 Ambiguous requirements

Analysis and Validation

10

 Analysis works with raw requirements as elicited from the

system stakeholders.

 “Have we got the right requirements?” is the key question

to be answered at this stage

 Validation works with a final draft of the requirements

document i.e., with negotiated and agreed requirements

 “Have we got the requirements right?” is the key question

to be answered at this stage

Requirements V&V Techniques

11

1. Requirements Reviews/Inspections

2. Prototyping

Requirements Reviews

12

A group of people read and analyze the requirements, look for

problems, meet and discuss the problems and agree on actions

to address these problems

Plan review
Distribute
documents

Prepare for
review

Hold review
meeting

Follow-up
actions

Revise
document

Review Activities

13

 Plan review: The review team is selected and a time and place for the

review meeting is chosen.

 Distribute documents: The requirements document is distributed to

the review team members

 Prepare for review: Individual reviewers read the requirements to find

conflicts, omissions, inconsistencies, deviations from standards and

other problems.

Hold review meeting: Individual comments and problems are

discussed and a set of actions to address the problems is agreed upon.

 Follow-up actions: The chair of the review checks that the agreed

upon actions have been carried out.

 Revise document: The requirements document is revised to reflect the

agreed upon actions. At this stage, it may be accepted or it may be re-

reviewed

Pre-review checking
14

 Reviews are expensive because they involve a number of people

spending time reading and checking the requirements document

 This expense can be reduced by using pre-review checking where one

person checks the document and looks for straightforward problems

such as missing requirements, lack of conformance to standards,

typographical errors, etc.

 Document may be returned for correction or the list of problems

distributed to other reviewers

Requirements
document

Problem report

Check
document

completeness

Check document
against

standards

Check document
structure

Run
automatic
checkers

Review team membership

15

Reviews should involve a number of stakeholders drawn from

different backgrounds

People from different backgrounds bring different skills and

knowledge to the review

 Stakeholders feel involved in the RE process and develop an

understanding of the needs of other stakeholders

Review team should always involve at least a domain expert

and an end-user

Review/Inspection checklists

16

Understandability: Can readers of the document understand what

the requirements mean?

Redundancy: Is information unnecessarily repeated in the

requirements document?

Completeness: Does the checker know of any missing

requirements or is there any information missing from individual

requirement descriptions?

Ambiguity: Are the requirements expressed using terms which are

clearly defined? Could readers from different backgrounds make

different interpretations of the requirements?

Review/Inspection checklists

17

Consistency: Do the descriptions of different requirements include

contradictions? Are there contradictions between individual

requirements and overall system requirements?

Conformance to standards: Does the requirements document and

individual requirements conform to defined standards? Are departures

from the standards, justified?

Organization: Is the document structured in a sensible way? Are the

descriptions of requirements organized so that related requirements are

grouped?

Traceability: Are requirements unambiguously identified, include links

to related requirements and to the reasons why these requirements have

been included?

Example of a checklist for inspecting Use Case models

18

1. Actors

1.1. Are there any actors that are not defined in the use case model, that is, will the system

communicate with any other systems, hardware or human users that have not been described?

1.2. Are there any superfluous actors in the use case model, that is, human users or other systems

that will not provide input to or receive output from the system?

1.3. Are all the actors clearly described, and do you agree with the descriptions?

1.4. Is it clear which actors are involved in which use cases, and can this be clearly seen from the use

case diagram and textual descriptions? Are all the actors connected to the right use cases?

2. The use cases

2.1. Is there any missing functionality, that is, do the actors have goals that must be fulfilled, but that

have not been described in use cases?

2.2. Are there any superfluous use cases, that is, use cases that are outside the boundary of the

system, do not lead to the fulfillment of a goal for an actor or duplicate functionality described in

other use cases?

2.3. Do all the use cases lead to the fulfillment of exactly one goal for an actor, and is it clear from

the use case name what is the goal?

2.4. Are the descriptions of how the actor interacts with the system in the use cases consistent with

the description of the actor?

2.5. Is it clear from the descriptions of the use cases how the goals are reached and do you agree

with the descriptions?

Example of a Checklist for inspecting Use Case models

19

3. The description of each use case

3.1. Is expected input and output correctly defined in each use case; is the output from the

system defined for every input from the actor, both for normal flow of events and

variations?

3.2. Does each event in the normal flow of events relate to the goal of its use case?

3.3. Is the flow of events described with concrete terms and measurable concepts and is it

described at a suitable level of detail without details that restrict the user interface or the

design of the system?

3.4. Are there any variants to the normal flow of events that have not been identified in

the use cases, that is, are there any missing variations?

3.5. Are the triggers, starting conditions, for each use case described at the correct level of

detail?

3.6. Are the pre- and post-conditions correctly described for all use cases, that is, are they

described with the correct level of detail, do the pre- and post conditions match for each

of the use cases and are they testable?

4. Relation between the use cases:

4.1. Do the use case diagram and the textual descriptions match?

4.2. Has the include-relation been used to factor out common behavior?

4.3. Does the behavior of a use case conflict with the behavior of other use cases?

4.4. Are all the use cases described at the same level of detail?

Prototyping
20

 Dilema:

You can’t evaluate design until it’s built

– But…

• After building, changes to the design are difficult

• Simulate the design, in low-cost manner

Prototyping Dimensions
21

1. Representation

– Can be just textual description or can be visuals and diagrams

2. Scope

– Is is just the interface (mock-up) or does it include some computational

component?

3. Executability

– Can the prototype be “run”?

4. Maturation

– What are the stages of the product as it comes along?

(Throw-away vs. Evolutionary)

Types of Prototypes
22

 Prototypes have different shapes and sizes:

 Low Fidelity vs. High Fidelity

 Horizontal vs. vertical

 Evolutionary vs. throwaway

Low Fidelity vs. High Fidelity
23

 Low-fidelity prototype

- Far from final form of system, such as paper, drawings, etc.

- Sketchy and incomplete, that has some characteristics of the

target product but is otherwise simple

 High-fidelity prototype

- Close to final form of system, much more realistic to actual

application.

- A computer-based interactive representation of the product.

Horizontal vs. Vertical Prototyping (1)

24

Horizontal Prototype: Provides a broad view of an entire system or

subsystem, focusing on user interaction. Example: all first and

second level menu commands.

Vertical Prototype: A more complete elaboration of few functions.

Horizontal vs. Vertical Prototyping (2)

25

Horizontal Prototype: Useful for:

 Confirmation of user interface requirements and system scope,

 Develop preliminary estimates of development time, cost and

effort.

Vertical Prototype: Useful for obtaining detailed requirements

for a given function, with the following benefits:

 Refinement database design,

 Clarify complex requirements by drilling down to actual system

functionality.

Throwaway vs. Evolutionary Prototyping

26

Throwaway or Rapid Prototyping:

 Creation of a model that will eventually be discarded rather than

becoming part of the final delivered software.

 It can be done quickly  quick feedback

 Making changes early in the development lifecycle is extremely cost

effective

Evolutionary Prototyping (also known as breadboard prototyping):

 Build a very robust prototype in a structured manner and constantly

refine it.

 Developers can focus on developing parts of the system that they

understand instead of working on developing a whole system.

Prototyping for Requirements Validation

27

 Prototypes for requirements validation demonstrate the

requirements and help stakeholders discover problems.

 Validation prototypes should be complete, reasonably

efficient and robust.

 It should be possible to use them in the same way as the

required system.

 User documentation and training should be provided.

Prototyping for Validation

28

Choose
prototype

testers

Document and extend prototype system

Develop
test

scenarios

Execute
scenarios

Document
problems

Prototyping Validation Steps

29

 Choose prototype testers

 The best testers are users who are fairly experienced and who are

open-minded about the use of new systems.

 Develop test scenarios

 Careful planning is required to draw up a set of test scenarios which

provide broad coverage of the requirements. End-users shouldn’t

just play around with the system as this may never exercise critical

system features.

 Execute scenarios

 The users try the system by executing the planned scenarios.

 Document problems

 Its usually best to define some kind of electronic or paper problem

report form which users fill in when they encounter a problem.

User Manual development

30

 Writing a user manual from the requirements forces a detailed

requirements analysis and thus can reveal problems with the

document

 Information in the user manual

Description of the functionalities

How to get out of trouble

How to install and get started with the system

Models V&V

31

 Validation of system models is an essential part of the

validation process

 Objectives of model V&V:

To demonstrate that each model is self-consistent

 If there are several models of the system, to demonstrate

that these are internally and externally consistent

To demonstrate that the models accurately reflect the

real requirements of system stakeholders

 Some checking is possible with automated tools

Requirements Testing

32

 Each requirement should be testable, i.e., it should be possible to

define tests to check whether or not that requirement has been

met.

 Inventing requirements tests is an effective validation

technique as missing or ambiguous information in the

requirements description may make it difficult to formulate tests.

 Each functional requirement should have an associated test

Test Case Definition

33

 What usage scenarios might be used to check the requirement?

 Does the requirement, on its own, include enough information

to allow a test to be defined?

 Is it possible to test the requirement using a single test or are

multiple test cases required?

 Could the requirement be re-stated to make the test cases more

obvious?

Test Record Form

34

 The requirement’s identifier: There should be at least one for

each requirement.

 Related requirements: These should be referenced as the test

may also be relevant to these requirements.

 Test description: A brief description of the test and why this is

an objective requirement test. This should include system

inputs and corresponding outputs.

 Requirements problems: A description of problems which

made test definition difficult or impossible.

 Comments and recommendations: These are advices on how

to solve requirements problems which have been discovered.

Key points

35

 Requirements validation should focus on checking the final draft of

the requirements document for conflicts, omissions and deviations

from standards.

 Reviews involve a group of people making a detailed analysis of the

requirements.

 Review costs can be reduced by checking the requirements before

the review for deviations from organizational standards.

 Checklists of what to look for may be used to drive a requirements

review process.

 Prototyping is effective for requirements validation if a prototype

has been developed during the requirements elicitation stage.

 Designing tests for requirements can reveal problems with the

requirements. If the requirement is unclear, it may be impossible to

define a test for it.

	Requirements Validation
	Course Topics
	Lecture Objectives
	Requirements Risks
	Example of issues in Requirements
	Example of issues in Requirements
	Requirements Verification and Validation (V & V)
	Verification and Validation (V & V)
	Requirements Validation and Verification Objectives
	Analysis and Validation
	Requirements V&V Techniques
	Requirements Reviews
	Review Activities
	Pre-review checking
	Review team membership
	Review/Inspection checklists
	Review/Inspection checklists
	Example of a checklist for inspecting Use Case models
	Example of a Checklist for inspecting Use Case models
	Prototyping
	Prototyping Dimensions
	Types of Prototypes
	Low Fidelity vs. High Fidelity
	Horizontal vs. Vertical Prototyping (1)
	Horizontal vs. Vertical Prototyping (2)
	Throwaway vs. Evolutionary Prototyping
	Prototyping for Requirements Validation
	Prototyping for Validation
	Prototyping Validation Steps
	User Manual development
	Models V&V
	Requirements Testing
	Test Case Definition
	Test Record Form
	Key points

